Streptothricin biosynthesis is catalyzed by enzymes related to nonribosomal peptide bond formation.

نویسندگان

  • M A Fernández-Moreno
  • C Vallín
  • F Malpartida
چکیده

In a search for strains producing biocides with a wide spectrum of activity, a new strain was isolated. This strain was taxonomically characterized as Streptomyces rochei F20, and the chemical structure of the bioactive product extracted from its fermentation broth was determined to be a mixture of streptothricins. From a genomic library of the producer strain prepared in the heterologous host Streptomyces lividans, a 7.2-kb DNA fragment which conferred resistance to the antibiotic was isolated. DNA sequencing of 5.2 kb from the cloned fragment revealed five open reading frames (ORFs) such that ORF1, -2, -3, and -4 were transcribed in the same direction while ORF5 was convergently arranged. The deduced product of ORF1 strongly resembled those of genes involved in peptide formation by a nonribosomal mechanism; the ORF2 product strongly resembled that of mphA and mphB isolated from Escherichia coli, which determines resistance to several macrolides by a macrolide 2'-phosphotransferase activity; the ORF3 product had similarities with several hydrolases; and the ORF5 product strongly resembled streptothricin acetyltransferases from different gram-positive and gram-negative bacteria. ORF5 was shown to be responsible for acetyl coenzyme A-dependent streptothricin acetylation. No similarities in the databases for the ORF4 product were found. Unlike other peptide synthases, that for streptothricin biosynthesis was arranged as a multienzymatic system rather than a multifunctional protein. Insertional inactivation of ORF1 and ORF2 (and to a lesser degree, of ORF3) abolishes antibiotic biosynthesis, suggesting their involvement in the streptothricin biosynthetic pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

tRNA-Dependent Aminoacylation of an Amino Sugar Intermediate in the Biosynthesis of a Streptothricin-Related Antibiotic.

UNLABELLED The antibiotic streptothricin (ST) possesses an amino sugar bound to an l-β-lysine (β-Lys) residue via a peptide bond. The peptide bond formation has been shown to be catalyzed by a nonribosomal peptide synthetase (NRPS) during ST biosynthesis. The focus of this study is the closely related ST analogue BD-12, which carries a glycine-derived side chain rather than a β-Lys residue. Her...

متن کامل

Aminoacyl-SNACs as small-molecule substrates for the condensation domains of nonribosomal peptide synthetases.

BACKGROUND Nonribosomal peptide synthetases (NRPSs) are large multidomain proteins that catalyze the formation of a wide range of biologically active natural products. These megasynthetases contain condensation (C) domains that catalyze peptide bond formation and chain elongation. The natural substrates for C domains are biosynthetic intermediates that are covalently tethered to thiolation (T) ...

متن کامل

A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins.

Fumonisins are a group of polyketide-derived mycotoxins produced by Fusarium verticillioides, a filamentous fungus infecting corn and contaminating food and feeds. Fumonisins contain two tricarballylic esters that are critical for toxicity. Here, we present genetic and biochemical data for the esterification mechanism. FUM14 in F. verticillioides has been deleted by homologous recombination, an...

متن کامل

Structural and mutational analysis of the nonribosomal peptide synthetase heterocyclization domain provides insight into catalysis.

Nonribosomal peptide synthetases (NRPSs) are a family of multidomain, multimodule enzymes that synthesize structurally and functionally diverse peptides, many of which are of great therapeutic or commercial value. The central chemical step of peptide synthesis is amide bond formation, which is typically catalyzed by the condensation (C) domain. In many NRPS modules, the C domain is replaced by ...

متن کامل

Colibactin assembly line enzymes use S-adenosylmethionine to build a cyclopropane ring

Despite containing an α-amino acid, the versatile cofactor S-adenosylmethionine (SAM) is not a known building block for nonribosomal peptide synthetase (NRPS) assembly lines. Here we report an unusual NRPS module from colibactin biosynthesis that uses SAM for amide bond formation and subsequent cyclopropanation. Our findings showcase a new use for SAM and reveal a novel biosynthetic route to a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 179 22  شماره 

صفحات  -

تاریخ انتشار 1997